Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc

نویسندگان

  • Andrew V. Knyazev
  • Merico E. Argentati
  • Ilya Lashuk
  • Evgueni E. Ovtchinnikov
چکیده

We describe our software package Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) publicly released recently. BLOPEX is available as a stand-alone serial library, as an external package to PETSc (“Portable, Extensible Toolkit for Scientific Computation”, a general purpose suite of tools for the scalable solution of partial differential equations and related problems developed by Argonne National Laboratory), and is also built into hypre (“High Performance Preconditioners”, scalable linear solvers package developed by Lawrence Livermore National Laboratory). The present BLOPEX release includes only one solver—the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems. hypre provides users with advanced high-quality parallel preconditioners for linear systems, in particular, with domain decomposition and multigrid preconditioners. With BLOPEX, the same preconditioners can now be efficiently used for symmetric eigenvalue problems. PETSc facilitates the integration of independently developed application modules with strict attention to component interoperability, and makes BLOPEX extremely easy to compile and use with preconditioners that are available via PETSc. We present the LOBPCG algorithm in BLOPEX for hypre and PETSc. We demonstrate numerically the scalability of BLOPEX by testing it on a number of distributed and shared memory parallel systems, including a Beowulf system, SUN Fire 880, an AMD dual-core Opteron workstation, and IBM BlueGene/L supercomputer, using PETSc domain decomposition and hypre multigrid preconditioning. We test BLOPEX on a model problem, the standard 7-point finite-difference approximation of the 3-D Laplacian, with the problem size in the range 105 − 108.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)

Since introduction [A. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SISC (2001) doi:10.1137/S1064827500366124] and efficient parallel implementation [A. Knyazev et al., Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc, SISC (2007) doi:10.1137/060661624], LOBPCG has been used is a wide r...

متن کامل

University of Colorado at Denver and Health Sciences Center Preconditioned Eigensolver LOBPCG in hypre and PETSc

We present preliminary results of an ongoing project to develop codes of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems for hypre and PETSc software packages. hypre and PETSc provide high quality domain decomposition and multigrid preconditioning for parallel computers. Our LOBPCG implementation for hypre is publicly available in hy...

متن کامل

Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods1

We numerically analyze the possibility of turning off postsmoothing (relaxation) in geometric multigrid when used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditio...

متن کامل

Nonsymmetric multigrid preconditioning for conjugate gradient methods

We numerically analyze the possibility of turning off post-smoothing (relaxation) in geometric multigrid used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditioned ...

متن کامل

Efficient Solution of Symmetric Eigenvalue Problems Using Multigrid Preconditioners in the Locally Optimal Block Conjugate Gradient Method

We present a short survey of multigrid–based solvers for symmetric eigenvalue problems. We concentrate our attention on “of the shelf” and “black box” methods, which should allow solving eigenvalue problems with minimal, or no, effort on the part of the developer, taking advantage of already existing algorithms and software. We consider a class of such methods, where the multigrid only appears ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007